Monday, August 9, 2010

Galaxy NGC 2976

Galaxies throughout the universe are ablaze with star birth. But for a nearby, small spiral galaxy, the star-making party is almost over.

Astronomers were surprised to find that star-formation activities in the outer regions of NGC 2976 have been virtually asleep because they shut down millions of years ago. The celebration is confined to a few die-hard partygoers huddled in the galaxy's inner region.

The explanation, astronomers say, is that a raucous interaction with a neighboring group of hefty galaxies ignited star birth in NGC 2976. Now the star-making fun is beginning to end. Images from NASA's Hubble Space Telescope show that star formation in the galaxy began fizzling out in its outskirts as some of the gas was stripped away and the rest collapsed toward the center. With no gas left to fuel the party, more and more regions of the galaxy are taking a much-needed nap.

"Astronomers thought that grazing encounters between galaxies can cause the funneling of gas into a galaxy's core, but these Hubble observations provide the clearest view of this phenomenon," explains astronomer Benjamin Williams of the University of Washington in Seattle, who directed the Hubble study, which is part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. "We are catching this galaxy at a very interesting time. Another 500 million years and the party will be over."

NGC 2976 does not look like a typical spiral galaxy. It has a star-forming disk, but no obvious spiral pattern. Its gas is centrally concentrated, but it does not have a central bulge of stars. The galaxy resides on the fringe of the M81 group of galaxies, located about 12 million light-years away in the constellation Ursa Major.

"The galaxy looks weird because an interaction with the M81 group about a billion years ago stripped some gas from the outer parts of the galaxy, forcing the rest of the gas to rush toward the galaxy's center, where it is has little organized spiral structure," Williams says.

The tsunami of gas racing toward the center has fueled rapid star birth for at least the past 500 million years in the relatively armless disk. At the same time, star birth ended in the galaxy's outer regions because the gas ran out. Now, the inner disk is running out of gas as new stars burst to life, shrinking the star-birth zone to a 5,000-light-year-wide area around the core.

"At one point during this process, the density of gas in the inner regions of this galaxy was very high, about five times higher than it is today," explains Julianne Dalcanton of the University of Washington, and leader of the ANGST team. "The gas vanished incredibly fast, and the galaxy now appears to be settling down."

Astronomers pieced together this star-formation story with the help of Hubble's sharp vision. The galaxy's relatively close distance to Earth allowed Hubble's Advanced Camera for Surveys (ACS) to resolve hundreds of thousands of individual stars. By studying those stars, the astronomers determined their color and brightness, which provided information about when the stars formed. The astronomers combined the Hubble results with a map, made from radio observations, showing the current distribution of hydrogen across the galaxy. The map is part of The HI Nearby Galaxy Survey by the National Radio Astronomy Observatory's Very Large Array in New Mexico. By analyzing the combined data, Williams and the team then reconstructed the star-making history for large areas of the galaxy.

"This type of observation is unique to Hubble," Williams says. "If we had not been able to pick out individual stars, we would have known that the galaxy is weird, but we would not have dug up evidence for a significant gas rearrangement in the galaxy, which caused the stellar birth zone to shrink toward the galaxy's center."

Simulations predict that the same "gas-funneling" mechanism may trigger starbursts in the central regions of other dwarf galaxies that interact with larger neighbors. The trick to studying the effects of this process in detail, Williams says, is being able to resolve many individual stars in galaxies to create an accurate picture of their evolution.

Williams' results will appear in the January 20, 2010 issue of The Astrophysical Journal.

CONTACT

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

Benjamin Williams
University of Washington, Seattle, WA
206-543-9849
ben@astro.washington.edu

Hickson Compact Group 31

Imagine finding a living dinosaur in your backyard. Astronomers have found the astronomical equivalent of prehistoric life in our intergalactic backyard: a group of small, ancient galaxies that has waited 10 billion years to come together. These "late bloomers" are on their way to building a large elliptical galaxy.

Such encounters between dwarf galaxies are normally seen billions of light-years away and therefore occurred billions of years ago. But these galaxies, members of Hickson Compact Group 31, are relatively nearby, only 166 million light-years away.

New images of this foursome by NASA's Hubble Space Telescope offer a window into the universe's formative years when the buildup of large galaxies from smaller building blocks was common.

Astronomers have known for decades that these dwarf galaxies are gravitationally tugging on each other. Their classical spiral shapes have been stretched like taffy, pulling out long streamers of gas and dust. The brightest object in the Hubble image is actually two colliding galaxies. The entire system is aglow with a firestorm of star birth, triggered when hydrogen gas is compressed by the close encounters between the galaxies and collapses to form stars.

The Hubble observations have added important clues to the story of this interacting group, allowing astronomers to determine when the encounter began and to predict a future merger.

"We found the oldest stars in a few ancient globular star clusters that date back to about 10 billion years ago. Therefore, we know the system has been around for a while," says astronomer Sarah Gallagher of The University of Western Ontario in London, Ontario, leader of the Hubble study. "Most other dwarf galaxies like these interacted billions of years ago, but these galaxies are just coming together for the first time. This encounter has been going on for at most a few hundred million years, the blink of an eye in cosmic history. It is an extremely rare local example of what we think was a quite common event in the distant universe."

Everywhere the astronomers looked in this group they found batches of infant star clusters and regions brimming with star birth. The entire system is rich in hydrogen gas, the stuff of which stars are made. Gallagher and her team used Hubble's Advanced Camera for Surveys to resolve the youngest and brightest of those clusters, which allowed them to calculate the clusters' ages, trace the star-formation history, and determine that the galaxies are undergoing the final stages of galaxy assembly.

The analysis was bolstered by infrared data from NASA's Spitzer Space Telescope and ultraviolet observations from the Galaxy Evolution Explorer (GALEX) and NASA's Swift satellite. Those data helped the astronomers measure the total amount of star formation in the system. "Hubble has the sharpness to resolve individual star clusters, which allowed us to age-date the clusters," Gallagher adds.

Hubble reveals that the brightest clusters, hefty groups each holding at least 100,000 stars, are less than 10 million years old. The stars are feeding off of plenty of gas. A measurement of the gas content shows that very little has been used up — further proof that the "galactic fireworks" seen in the images are a recent event. The group has about five times as much hydrogen gas as our Milky Way Galaxy.

"This is a clear example of a group of galaxies on their way toward a merger because there is so much gas that is going to mix everything up," Gallagher says. "The galaxies are relatively small, comparable in size to the Large Magellanic Cloud, a satellite galaxy of our Milky Way. Their velocities, measured from previous studies, show that they are moving very slowly relative to each other, just 134,000 miles an hour (60 kilometers a second). So it's hard to imagine how this system wouldn't wind up as a single elliptical galaxy in another billion years."

Adds team member Pat Durrell of Youngstown State University: "The four small galaxies are extremely close together, within 75,000 light-years of each other — we could fit them all within our Milky Way."

Why did the galaxies wait so long to interact? Perhaps, says Gallagher, because the system resides in a lower-density region of the universe, the equivalent of a rural village. Getting together took billions of years longer than it did for galaxies in denser areas.

Hickson Compact Group 31 is one of 100 compact galaxy groups catalogued by Canadian astronomer Paul Hickson.

Gallagher's results appear in the February issue of The Astronomical Journal.

Her science team consists of Pat Durrell (Youngstown State University), Debra Elmegreen (Vassar College), Rupali Chandar (University of Toledo), Jayanne English (University of Manitoba), Jane Charlton, Caryl Gronwal, and Jason Young (Penn State), Panayiotis Tzanavaris (NASA's Goddard Space Flight Center), Kelsey Johnson (University of Virginia), Claudia Mendes de Oliveira (University of São Paulo), Brad Whitmore (STScI), Ann Hornschemeier (NASA's Goddard Space Flight Center), Aparna Maybhate (STScI), and Ann Zabludoff (University of Arizona).

CONTACT

Donna Weaver
Space Telescope Science Institute, Baltimore, Md.
410-338-4493
dweaver@stsci.edu

Sarah Gallagher
The University of Western Ontario, London, Ontario, Canada
519-661-2111 begin_of_the_skype_highlighting 519-661-2111 end_of_the_skype_highlighting (x86707)
sgalla4@uwo.ca

The three galaxies NGC 7173, NGC 7174 and NGC 7176

Though they are the largest and most widely scattered objects in the universe, galaxies do go bump in the night. The Hubble Space Telescope has photographed many pairs of galaxies colliding. Like snowflakes, no two examples look exactly alike. This is one of the most arresting galaxy smash-up images to date.

At first glance, it looks as if a smaller galaxy has been caught in a tug-of-war between a Sumo-wrestler pair of elliptical galaxies. The hapless, mangled galaxy may have once looked more like our Milky Way, a pinwheel-shaped galaxy. But now that it's caught in a cosmic Cuisinart, its dust lanes are being stretched and warped by the tug of gravity. Unlike the elliptical galaxies, the spiral is rich in dust and gas for the formation of new stars. It is the fate of the spiral galaxy to be pulled like taffy and then swallowed by the pair of elliptical galaxies. This will trigger a firestorm of new stellar creation. If there are astronomers on any planets in this galaxy group, they will have a ringside seat to seeing a flurry of starbirth unfolding over many millions of years to come. Eventually the ellipticals should merge too, creating one single super-galaxy many times larger than our Milky Way. This trio is part of a tight cluster of 16 galaxies, many of them being dwarf galaxies. The galaxy cluster is called the Hickson Compact Group 90 and lies about 100 million light-years away in the direction of the constellation Piscis Austrinus, the Southern Fish.

This NASA Hubble Space Telescope image shows three galaxies playing a game of gravitational tug-of-war that may result in the eventual demise of one of them.

Located about 100 million light-years away in the constellation Piscis Austrinus (the Southern Fish), the galaxy interaction may ultimately lead to the three reforming into two larger star cities.

The three galaxies—NGC 7173 (middle left), NGC 7174 (middle right), and NGC 7176 (lower right)—are part of Hickson Compact Group 90, named after astronomer Paul Hickson, who first cataloged these small clusters of galaxies in the 1980s. NGC 7173 and NGC 7176 appear to be smooth, normal elliptical galaxies without much gas and dust.

In stark contrast, NGC 7174 is a mangled spiral galaxy that appears as though it is being ripped apart by its close neighbors. The galaxies are experiencing a strong gravitational interaction, and as a result, a significant number of stars have been ripped away from their home galaxies. These stars are now spread out, forming a tenuous luminous component in the galaxy group.

Ultimately, astronomers believe that NGC 7174 will be shredded and only the two "normal" elliptical galaxies (NGC 7173 and NGC 7176) will remain.

Hubble imaged these galaxies with the Advanced Camera for Surveys in May 2006.

For additional information, contact:

Colleen Sharkey
Hubble/ESA, Garching, Germany
011-49-89-3200-6306
011-49-015115373591 (cell)
csharkey@eso.org

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Object Names: Hickson Compact Group 90, HCG 90, M59

Image Type: Astronomical

Credit: NASA, ESA, and R. Sharples (University of Durham)

Galaxy Zwicky 18

NASA's Hubble Space Telescope has found a galaxy that is the equivalent of the painting of Dorian Gray, a portrait in an Oscar Wilde novel that appears mysteriously to age.

Like the fictional painting, the galaxy I Zwicky 18 appears to look older the more astronomers study it. What astronomers once thought was a toddler galaxy by galactic standards may now be considered an adult.

The galaxy's youthful appearance was identified some 40 years ago through observations at the Palomar Observatory. Those studies showed that the galaxy erupted with star formation billions of years after its galactic neighbors. Galaxies resembling I Zwicky 18's youthful appearance are typically found only in the early universe. Astronomers were thrilled that a newly forming galaxy like I Zwicky 18 could be studied nearby to learn about galactic evolution, which is normally only observable at great distances.

New Hubble data have quashed that possibility. The telescope found faint, older stars contained within the galaxy, suggesting its star formation started at least 1 billion years ago and possibly as much as 10 billion years ago. The galaxy, therefore, may have formed at the same time as most other galaxies.

"Although the galaxy is not as youthful as was once believed, it is certainly developmentally challenged and unique in the nearby universe," said astronomer Alessandra Aloisi from the Space Telescope Science Institute and the European Space Agency in Baltimore, Md., who led the new study.

Spectroscopic observations with ground-based telescopes have shown that I Zwicky 18 is almost exclusively composed of hydrogen and helium, the main ingredients created in the Big Bang. Heavier elements are forged within the cores of stars and blasted into space when the stars die. The galaxy's primordial makeup suggests that its rate of star formation has been much lower than that of other galaxies of similar age. The galaxy has been studied with most of NASA's telescopes, including the Spitzer Space Telescope, the Chandra X-ray Observatory, and the Far Ultraviolet Spectroscopic Explorer (FUSE). However, it remains a mystery why I Zwicky 18 formed so few stars in the past, and why it is forming so many new stars right now.

The Hubble data also suggest that I Zwicky 18 is 59 million light-years from Earth, almost 10 million light-years more distant than previously believed. While this is still in our own backyard, as measured by extragalactic standards, the galaxy's larger-than-expected distance may explain why astronomers have had difficulty detecting older, fainter stars within the galaxy until now. In fact, the faint, old stars in I Zwicky 18 are almost at the limit of Hubble's resolution and sensitivity.

Aloisi and her team discerned the new distance by observing flashing stellar mile-markers within I Zwicky 18. These massive stars, called Cepheid variable stars, pulse in a regular rhythm. The timing of their pulsations is directly related to their brightness. By comparing the stars' actual brightness with their observed brightness, astronomers can precisely measure their distance. The team determined the observed brightness of three Cepheids and compared it with the actual brightness predicted by theoretical models. These models were calculated specifically for I Zwicky 18's deficiency in heavy elements, indicating the galaxy's stars formed before these elements were abundant in the universe. This analysis allowed the astronomers to determine the galaxy's distance. The Cepheid distance also was validated through another distance indicator, specifically the observed brightness of the brightest red stars older than 1 billion years.

Cepheid variable stars have been studied for decades and have been instrumental in the determination of the scale of our universe. This is the first time, however, that variable stars with so few heavy elements were found. This may provide unique new insights into the properties of variable stars, which is now a topic of ongoing study.

Aloisi and her team published their results in the Oct. 1 issue of the Astrophysical Journal Letters.

Aloisi's team consists of Francesca Annibali, Jennifer Mack, and Roeland van der Marel of the Space Telescope Science Institute; Marco Sirianni of the Space Telescope Science Institute and the European Space Agency; Abhijit Saha of the National Optical Astronomy Observatories; and Gisella Clementini, Rodrigo Contreras, Giuliana Fiorentino, Marcella Marconi, Ilaria Musella, and Monica Tosi of the Italian National Astrophysics Institutes in Bologna and Naples.

CONTACT

Donna Weaver/Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4493/4514
dweaver@stsci.edu
villard@stsci.edu

Lars Lindberg Christensen
Hubble/ESA, Garching, Germany
(011)49-89-3200-6306
lars@eso.org

Alessandra Aloisi
Space Telescope Science Institute/European Space Agency, Baltimore, Md.
410-338-4519
aloisi@stsci.edu

Arp 274, also known as NGC 5679

On April 1-2, the Hubble Space Telescope photographed the winning target in the Space Telescope Science Institute's "You Decide" competition in celebration of the International Year of Astronomy (IYA).

The winner is a group of galaxies called Arp 274. The striking object received 67,021 votes out of the nearly 140,000 votes cast for the six candidate targets.

Arp 274, also known as NGC 5679, is a system of three galaxies that appear to be partially overlapping in the image, although they may be at somewhat different distances. The spiral shapes of two of these galaxies appear mostly intact. The third galaxy (to the far left) is more compact, but shows evidence of star formation.

Two of the three galaxies are forming new stars at a high rate. This is evident in the bright blue knots of star formation that are strung along the arms of the galaxy on the right and along the small galaxy on the left.

The largest component is located in the middle of the three. It appears as a spiral galaxy, which may be barred. The entire system resides at about 400 million light-years away from Earth in the constellation Virgo.

Hubble's Wide Field Planetary Camera 2 was used to image Arp 274. Blue, visible, and infrared filters were combined with a filter that isolates hydrogen emission. The colors in this image reflect the intrinsic color of the different stellar populations that make up the galaxies. Yellowish older stars can be seen in the central bulge of each galaxy. A bright central cluster of stars pinpoint each nucleus. Younger blue stars trace the spiral arms, along with pinkish nebulae that are illuminated by new star formation. Interstellar dust is silhouetted against the starry population. A pair of foreground stars inside our own Milky Way are at far right.

The International Year of Astronomy is the celebration of the 400th anniversary of Galileo's first observations with a telescope. People around the world are coming together to participate in the IYA's 100 Hours of Astronomy, April 2 to 5. This global astronomy event is geared toward encouraging as many people as possible to experience the night sky.

For additional information, contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Mario Livio
Space Telescope Science Institute, Baltimore, Md.
410-338-4439
mlivio@stsci.edu

Keith Noll
Space Telescope Science Institute, Baltimore, Md.
410-338-1828
noll@stsci.edu

Object Names: Arp 274, NGC 5679

Image Type: Astronomical

Credit: NASA, ESA, M. Livio and the Hubble Heritage Team (STScI/AURA)

Interacting Galaxies Group Arp 194

To commemorate the Hubble Space Telescope's 19 years of historic, trailblazing science, the orbiting telescope has photographed a peculiar system of galaxies known as Arp 194. This interacting group contains several galaxies, along with a "cosmic fountain" of stars, gas, and dust that stretches over 100,000 light-years.

The northern (upper) component of Arp 194 appears as a haphazard collection of dusty spiral arms, bright blue star-forming regions, and at least two galaxy nuclei that appear to be connected and in the early stages of merging. A third, relatively normal, spiral galaxy appears off to the right. The southern (lower) component of the galaxy group contains a single large spiral galaxy with its own blue star-forming regions.

However, the most striking feature of this galaxy troupe is the impressive blue stream of material extending from the northern component. This "fountain" contains complexes of super star clusters, each one of which may contain dozens of individual young star clusters. The blue color is produced by the hot, massive stars which dominate the light in each cluster. Overall, the "fountain" contains many millions of stars.

These young star clusters probably formed as a result of the interactions between the galaxies in the northern component of Arp 194. The compression of gas involved in galaxy interactions can enhance the star-formation rate and give rise to brilliant bursts of star formation in merging systems.

Hubble's resolution shows clearly that the stream of material lies in front of the southern component of Arp 194, as evidenced by the dust that is silhouetted around the star-cluster complexes. It is therefore not entirely clear whether the southern component actually interacts with the northern pair.

The details of the interactions among the multiple galaxies that make up Arp 194 are complex. The shapes of all the galaxies involved appear to have been distorted, possibly by their gravitational interactions with one another.

Arp 194, located in the constellation Ursa Major, resides approximately 600 million light-years away from Earth. It contains some of the many interacting and merging galaxies known in our relatively nearby universe. These observations were taken in January of 2009 with the Wide Field Planetary Camera 2. Images taken through blue, green, and red filters were combined to form this picturesque image of galaxy interaction.

For additional information, contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Keith Noll
Space Telescope Science Institute, Baltimore, Md.
410-338-1828
noll@stsci.edu

Object Name: Arp 194

Image Type: Astronomical

Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)


Galaxy Cluster MACS J0717

The most crowded collision of galaxy clusters has been identified by combining information from three different telescopes. This result gives scientists a chance to learn what happens when some of the largest objects in the universe go at each other in a cosmic free-for-all. Using data from NASA's Chandra X-ray Observatory, Hubble Space Telescope, and the Keck Observatory in Hawaii, astronomers were able to determine the three-dimensional geometry and motion in the system MACS J0717.5+3745 (or MACS J0717, for short), located about 5.4 billion light-years from Earth. This composite image shows the massive galaxy cluster MACS J0717.5+3745 (MACS J0717, for short), where four separate galaxy clusters have been involved in a collision — the first time such a phenomenon has been documented. Hot gas is shown in an image from NASA's Chandra X-ray Observatory, and galaxies are shown in an optical image from NASA's Hubble Space Telescope. The hot gas is color-coded to show temperature, where the coolest gas is reddish purple, the hottest gas is blue, and the temperatures in between are purple.

The repeated collisions in MACS J0717 are caused by a 13-million-light-year-long stream of galaxies, gas, and dark matter — known as a filament — pouring into a region already full of matter. A collision between the gas in two or more clusters causes the hot gas to slow down. However, the massive and compact galaxies do not slow down as much as the gas does, and so move ahead of it. Therefore, the speed and direction of each cluster's motion — perpendicular to the line of sight — can be estimated by studying the offset between the average position of the galaxies and the peak in the hot gas. MACS J0717 is located about 5.4 billion light-years from Earth. It is one of the most complex galaxy clusters ever seen. Other well-known clusters, like the Bullet Cluster and MACS

J0025.4-1222, involve the collision of only two galaxy clusters and show much simpler geometry.
Object Name: MACS J0717.5+3745 Image Type: Astronomical Credit:
NASA, ESA, CXC, C. Ma,
H. Ebeling, and E. Barrett (University of Hawaii/IfA), et al., and STScI